On the metric dimension of converging sequences
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 367-373.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper, some kind of independence between upper metric dimension and natural order of converging sequences is shown --- for any sequence converging to zero there is a greater sequence with an arbitrary ($\leqslant 1$) upper dimension. On the other hand there is a relationship to summability of series --- the set of elements of any positive summable series must have metric dimension less than or equal to $1/2$.
Classification : 40A05, 40J05, 54E35, 54E45, 54F45, 54F50
Keywords: metric dimension; converging sequences; summability of series
@article{CMUC_1993__34_2_a19,
     author = {Mi\v{s}{\'\i}k, Ladislav, Jr. and \v{Z}\'a\v{c}ik, Tibor},
     title = {On the metric dimension of converging sequences},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {367--373},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1993},
     mrnumber = {1241746},
     zbl = {0845.54026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a19/}
}
TY  - JOUR
AU  - Mišík, Ladislav, Jr.
AU  - Žáčik, Tibor
TI  - On the metric dimension of converging sequences
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 367
EP  - 373
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a19/
LA  - en
ID  - CMUC_1993__34_2_a19
ER  - 
%0 Journal Article
%A Mišík, Ladislav, Jr.
%A Žáčik, Tibor
%T On the metric dimension of converging sequences
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 367-373
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a19/
%G en
%F CMUC_1993__34_2_a19
Mišík, Ladislav, Jr.; Žáčik, Tibor. On the metric dimension of converging sequences. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 367-373. http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a19/