On the metric dimension of converging sequences
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 367-373
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In the paper, some kind of independence between upper metric dimension and natural order of converging sequences is shown --- for any sequence converging to zero there is a greater sequence with an arbitrary ($\leqslant 1$) upper dimension. On the other hand there is a relationship to summability of series --- the set of elements of any positive summable series must have metric dimension less than or equal to $1/2$.
Classification :
40A05, 40J05, 54E35, 54E45, 54F45, 54F50
Keywords: metric dimension; converging sequences; summability of series
Keywords: metric dimension; converging sequences; summability of series
@article{CMUC_1993__34_2_a19,
author = {Mi\v{s}{\'\i}k, Ladislav, Jr. and \v{Z}\'a\v{c}ik, Tibor},
title = {On the metric dimension of converging sequences},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {367--373},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1993},
mrnumber = {1241746},
zbl = {0845.54026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a19/}
}
TY - JOUR AU - Mišík, Ladislav, Jr. AU - Žáčik, Tibor TI - On the metric dimension of converging sequences JO - Commentationes Mathematicae Universitatis Carolinae PY - 1993 SP - 367 EP - 373 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a19/ LA - en ID - CMUC_1993__34_2_a19 ER -
Mišík, Ladislav, Jr.; Žáčik, Tibor. On the metric dimension of converging sequences. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 367-373. http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a19/