Bernoulli sequences and Borel measurability in $(0,1)$
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 341-346.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The necessary and sufficient condition for a function $f : (0,1) \to [0,1] $ to be Borel measurable (given by Theorem stated below) provides a technique to prove (in Corollary 2) the existence of a Borel measurable map $H : \{ 0,1 \}^\Bbb N \to \{ 0,1 \}^\Bbb N$ such that $\Cal L (H(\text{\bf X}^p)) = \Cal L (\text{\bf X}^{1/2})$ holds for each $p \in (0,1)$, where $\text{\bf X}^p = (X^p_1 , X^p_2 , \ldots )$ denotes Bernoulli sequence of random variables with $P[X^p_i = 1] = p$.
Classification : 28A20, 60A10
Keywords: Borel measurable function; Bernoulli sequence of random variables; Strong law of large numbers
@article{CMUC_1993__34_2_a15,
     author = {Vesel\'y, Petr},
     title = {Bernoulli sequences and {Borel} measurability in $(0,1)$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {341--346},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1993},
     mrnumber = {1241742},
     zbl = {0777.60003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a15/}
}
TY  - JOUR
AU  - Veselý, Petr
TI  - Bernoulli sequences and Borel measurability in $(0,1)$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 341
EP  - 346
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a15/
LA  - en
ID  - CMUC_1993__34_2_a15
ER  - 
%0 Journal Article
%A Veselý, Petr
%T Bernoulli sequences and Borel measurability in $(0,1)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 341-346
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a15/
%G en
%F CMUC_1993__34_2_a15
Veselý, Petr. Bernoulli sequences and Borel measurability in $(0,1)$. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 341-346. http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a15/