Contact manifolds, harmonic curvature tensor and $(k,\mu )$-nullity distribution
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 323-334.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we give first a classification of contact Riemannian manifolds with harmonic curvature tensor under the condition that the characteristic vector field $\xi $ belongs to the $(k,\mu )$-nullity distribution. Next it is shown that the dimension of the $(k,\mu )$-nullity distribution is equal to one and therefore is spanned by the characteristic vector field $\xi $.
Classification : 53C05, 53C15, 53C20, 53C21, 53C25
Keywords: contact Riemannian manifold; harmonic curvature; $D$-homothetic deformation
@article{CMUC_1993__34_2_a13,
     author = {Papantoniou, Basil J.},
     title = {Contact manifolds, harmonic curvature tensor and $(k,\mu )$-nullity distribution},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {323--334},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1993},
     mrnumber = {1241740},
     zbl = {0782.53024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a13/}
}
TY  - JOUR
AU  - Papantoniou, Basil J.
TI  - Contact manifolds, harmonic curvature tensor and $(k,\mu )$-nullity distribution
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 323
EP  - 334
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a13/
LA  - en
ID  - CMUC_1993__34_2_a13
ER  - 
%0 Journal Article
%A Papantoniou, Basil J.
%T Contact manifolds, harmonic curvature tensor and $(k,\mu )$-nullity distribution
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 323-334
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a13/
%G en
%F CMUC_1993__34_2_a13
Papantoniou, Basil J. Contact manifolds, harmonic curvature tensor and $(k,\mu )$-nullity distribution. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 323-334. http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a13/