On a class of commutative groupoids determined by their associativity triples
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 199-201.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G = G(\cdot)$ be a commutative groupoid such that $\{(a,b,c) \in G^3$; $a\cdot bc \ne ab\cdot c\} = \{(a,b,c) \in G^3$; $a=b\ne c$ or $ a \ne b =c \}$. Then $G$ is determined uniquely up to isomorphism and if it is finite, then $\operatorname{card}(G) = 2^i$ for an integer $i\ge 0$.
Classification : 05B15, 05E99, 20L05, 20N02
Keywords: commutative groupoid; associative triples
@article{CMUC_1993__34_2_a0,
     author = {Dr\'apal, Ale\v{s}},
     title = {On a class of commutative groupoids determined by their associativity triples},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {199--201},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1993},
     mrnumber = {1241727},
     zbl = {0787.20040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a0/}
}
TY  - JOUR
AU  - Drápal, Aleš
TI  - On a class of commutative groupoids determined by their associativity triples
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 199
EP  - 201
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a0/
LA  - en
ID  - CMUC_1993__34_2_a0
ER  - 
%0 Journal Article
%A Drápal, Aleš
%T On a class of commutative groupoids determined by their associativity triples
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 199-201
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a0/
%G en
%F CMUC_1993__34_2_a0
Drápal, Aleš. On a class of commutative groupoids determined by their associativity triples. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 199-201. http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a0/