On analyticity in cosmic spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 1, pp. 185-190.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that a cosmic space (= a Tychonoff space with a countable network) is analytic if it is an image of a $K$-analytic space under a measurable mapping. We also obtain characterizations of analyticity and $\sigma $-compactness in cosmic spaces in terms of metrizable continuous images. As an application, we show that if $X$ is a separable metrizable space and $Y$ is its dense subspace then the space of restricted continuous functions $C_p(X\mid Y)$ is analytic iff it is a $K_{\sigma \delta }$-space iff $X$ is $\sigma $-compact.
Classification : 54C35, 54C50, 54E20, 54H05
Keywords: measurable mapping; cosmic space; analyticity; topology of pointwise convergence
@article{CMUC_1993__34_1_a18,
     author = {Okunev, Oleg},
     title = {On analyticity in cosmic spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {185--190},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1993},
     mrnumber = {1240216},
     zbl = {0837.54009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_1_a18/}
}
TY  - JOUR
AU  - Okunev, Oleg
TI  - On analyticity in cosmic spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 185
EP  - 190
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_1_a18/
LA  - en
ID  - CMUC_1993__34_1_a18
ER  - 
%0 Journal Article
%A Okunev, Oleg
%T On analyticity in cosmic spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 185-190
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_1_a18/
%G en
%F CMUC_1993__34_1_a18
Okunev, Oleg. On analyticity in cosmic spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 1, pp. 185-190. http://geodesic.mathdoc.fr/item/CMUC_1993__34_1_a18/