On global existence and stationary solutions for two classes of semilinear parabolic problems
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 1, pp. 105-124.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate stationary solutions and asymptotic behaviour of solutions of two boundary value problems for semilinear parabolic equations. These equations involve both blow up and damping terms and they were studied by several authors. Our main goal is to fill some gaps in these studies.
Classification : 35B30, 35B40, 35J65, 35K60
Keywords: global existence; blow up; semilinear parabolic equation; stationary solution
@article{CMUC_1993__34_1_a11,
     author = {Quittner, Pavol},
     title = {On global existence and stationary solutions for two classes of semilinear parabolic problems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {105--124},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1993},
     mrnumber = {1240209},
     zbl = {0794.35089},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_1_a11/}
}
TY  - JOUR
AU  - Quittner, Pavol
TI  - On global existence and stationary solutions for two classes of semilinear parabolic problems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 105
EP  - 124
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_1_a11/
LA  - en
ID  - CMUC_1993__34_1_a11
ER  - 
%0 Journal Article
%A Quittner, Pavol
%T On global existence and stationary solutions for two classes of semilinear parabolic problems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 105-124
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_1_a11/
%G en
%F CMUC_1993__34_1_a11
Quittner, Pavol. On global existence and stationary solutions for two classes of semilinear parabolic problems. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 1, pp. 105-124. http://geodesic.mathdoc.fr/item/CMUC_1993__34_1_a11/