Cotorsion-free algebras as endomorphism algebras in $L$ - the discrete and topological cases
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 1, pp. 1-9.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The discrete algebras $A$ over a commutative ring $R$ which can be realized as the full endomorphism algebra of a torsion-free $R$-module have been investigated by Dugas and Göbel under the additional set-theoretic axiom of constructi\-bi\-li\-ty, $V=L$. Many interesting results have been obtained for cotorsion-free algebras but the proofs involve rather elaborate calculations in linear algebra. Here these results are re\-derived in a more natural topological setting and substantial generalizations to topological algebras (which could not be handled in the previous linear algebra approach) are obtained. The results obtained are independent of the usual Zermelo-Fraenkel set theory ZFC.
Classification : 03C60, 03E35, 16A65, 16S50, 16W80, 20K20, 20K30
Keywords: cotorsion-free; endomorphism algebra; axiom of constructibility; Zermelo-Fraenkel set theory
@article{CMUC_1993__34_1_a0,
     author = {G\"obel, R. and Goldsmith, B.},
     title = {Cotorsion-free algebras as endomorphism algebras in $L$ - the discrete and topological cases},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1993},
     mrnumber = {1240198},
     zbl = {0804.16031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_1_a0/}
}
TY  - JOUR
AU  - Göbel, R.
AU  - Goldsmith, B.
TI  - Cotorsion-free algebras as endomorphism algebras in $L$ - the discrete and topological cases
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 1
EP  - 9
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_1_a0/
LA  - en
ID  - CMUC_1993__34_1_a0
ER  - 
%0 Journal Article
%A Göbel, R.
%A Goldsmith, B.
%T Cotorsion-free algebras as endomorphism algebras in $L$ - the discrete and topological cases
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 1-9
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_1_a0/
%G en
%F CMUC_1993__34_1_a0
Göbel, R.; Goldsmith, B. Cotorsion-free algebras as endomorphism algebras in $L$ - the discrete and topological cases. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/CMUC_1993__34_1_a0/