The product of distributions on $R^m$
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 605-614
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The fixed infinitely differentiable function $\rho (x)$ is such that $\{n\rho (n x)\}$ is a re\-gular sequence converging to the Dirac delta function $\delta $. The function $\delta _{\bold n}(\bold x)$, with $\bold x=(x_1, \dots , x_m)$ is defined by $$ \delta _{\bold n}(\bold x)=n_1 \rho (n_1 x_1)\dots n_m \rho (n_m x_m). $$ The product $f \circ g$ of two distributions $f$ and $g$ in $\mathcal D'_m$ is the distribution $h$ defined by $$ \operatornamewithlimits{N\mbox{--}\lim}\limits _{n_1\rightarrow \infty } \dots \operatornamewithlimits{N\mbox{--}\lim}\limits _{n_m\rightarrow \infty } \langle f_{\bold n} g_{\bold n}, \phi \rangle = \langle h, \phi \rangle, $$ provided this neutrix limit exists for all $\phi (\bold x)=\phi _1(x_1)\dots \phi _m(x_m)$, where $f_{\bold n}=f \ast \delta _{\bold n}$ and $g_{\bold n}=g\ast \delta _{\bold n}$.
@article{CMUC_1992__33_4_a4,
author = {Lin-Zhi, Cheng and Fisher, Brian},
title = {The product of distributions on $R^m$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {605--614},
publisher = {mathdoc},
volume = {33},
number = {4},
year = {1992},
mrnumber = {1240181},
zbl = {0818.46035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a4/}
}
Lin-Zhi, Cheng; Fisher, Brian. The product of distributions on $R^m$. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 605-614. http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a4/