A general upper bound in extremal theory of sequences
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 737-746.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate the extremal function $f(u,n)$ which, for a given finite sequence $u$ over $k$ symbols, is defined as the maximum length $m$ of a sequence $v=a_1a_2...a_m$ of integers such that 1) $1 \leq a_i \leq n$, 2) $a_i=a_j, i\not =j$ implies $|i-j|\geq k$ and 3) $v$ contains no subsequence of the type $u$. We prove that $f(u,n)$ is very near to be linear in $n$ for any fixed $u$ of length greater than 4, namely that $$ f(u,n)=O(n2^{O(\alpha (n)^{|u|-4})}). $$ Here $|u|$ is the length of $u$ and $\alpha (n)$ is the inverse to the Ackermann function and goes to infinity very slowly. This result extends the estimates in [S] and [ASS] which treat the case $u=abababa\ldots $ and is achieved by similar methods.
Classification : 05D99, 68R15
Keywords: sequence; Davenport-Schinzel sequence; length; upper bound
@article{CMUC_1992__33_4_a19,
     author = {Klazar, Martin},
     title = {A general upper bound in extremal theory of sequences},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {737--746},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {1992},
     mrnumber = {1240196},
     zbl = {0781.05049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a19/}
}
TY  - JOUR
AU  - Klazar, Martin
TI  - A general upper bound in extremal theory of sequences
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 737
EP  - 746
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a19/
LA  - en
ID  - CMUC_1992__33_4_a19
ER  - 
%0 Journal Article
%A Klazar, Martin
%T A general upper bound in extremal theory of sequences
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 737-746
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a19/
%G en
%F CMUC_1992__33_4_a19
Klazar, Martin. A general upper bound in extremal theory of sequences. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 737-746. http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a19/