Dimensional compactness in biequivalence vector spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 681-688.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The notion of dimensionally compact class in a biequivalence vector space is introduced. Similarly as the notion of compactness with respect to a $\pi $-equivalence reflects our nonability to grasp any infinite set under sharp distinction of its elements, the notion of dimensional compactness is related to the fact that we are not able to measure out any infinite set of independent parameters. A fairly natural Galois connection between equivalences on an infinite set $s$ and classes of set functions $s \rightarrow Q$ is investigated. Finally, a direct connection between compactness of a $\pi $-equivalence $R \subseteq s^2$ and dimensional compactness of the class $\bold C[R]$ of all continuous set functions from $\langle s,R \rangle $ to $\langle Q,\doteq \rangle $ is established.
Classification : 03E70, 03H05, 46E25, 46S10, 46S20, 46S99
Keywords: alternative set theory; biequivalence vector space; $\pi$-equivalence; continuous function; set uniform equivalence; compact; dimensionally compact
@article{CMUC_1992__33_4_a12,
     author = {N\'ater, J. and Pulmann, P. and Zlato\v{s}, P.},
     title = {Dimensional compactness in biequivalence vector spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {681--688},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {1992},
     mrnumber = {1240189},
     zbl = {0784.46064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a12/}
}
TY  - JOUR
AU  - Náter, J.
AU  - Pulmann, P.
AU  - Zlatoš, P.
TI  - Dimensional compactness in biequivalence vector spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 681
EP  - 688
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a12/
LA  - en
ID  - CMUC_1992__33_4_a12
ER  - 
%0 Journal Article
%A Náter, J.
%A Pulmann, P.
%A Zlatoš, P.
%T Dimensional compactness in biequivalence vector spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 681-688
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a12/
%G en
%F CMUC_1992__33_4_a12
Náter, J.; Pulmann, P.; Zlatoš, P. Dimensional compactness in biequivalence vector spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 681-688. http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a12/