$\in $-representation and set-prolongations
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 661-666.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By an $\in $-representation of a relation we mean its isomorphic embedding to $\Bbb E = \{\langle x,y\rangle;\,x\in y\}$. Some theorems on such a representation are presented. Especially, we prove a version of the well-known theorem on isomorphic representation of extensional and well-founded relations in $\Bbb E$, which holds in Zermelo-Fraenkel set theory. This our version is in Zermelo-Fraenkel set theory false. A general theorem on a set-prolongation is proved; it enables us to solve the task of the representation in question.
Classification : 03E70, 04A99
Keywords: isomorphic representation; extensional relation; well-founded relation; set-pro\-lon\-gation
@article{CMUC_1992__33_4_a10,
     author = {Ml\v{c}ek, Josef},
     title = {$\in $-representation and set-prolongations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {661--666},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {1992},
     mrnumber = {1240187},
     zbl = {0784.03032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a10/}
}
TY  - JOUR
AU  - Mlček, Josef
TI  - $\in $-representation and set-prolongations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 661
EP  - 666
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a10/
LA  - en
ID  - CMUC_1992__33_4_a10
ER  - 
%0 Journal Article
%A Mlček, Josef
%T $\in $-representation and set-prolongations
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 661-666
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a10/
%G en
%F CMUC_1992__33_4_a10
Mlček, Josef. $\in $-representation and set-prolongations. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 661-666. http://geodesic.mathdoc.fr/item/CMUC_1992__33_4_a10/