Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 451-463.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(X,\rho)$, $(Y,\sigma)$ be metric spaces and $f:X\to Y$ an injective mapping. We put $\|f\|_{Lip} = \sup \{\sigma (f(x),f(y))/\rho(x,y)$; $x,y\in X$, $x\neq y\}$, and $\operatorname{dist}(f)= \|f\|_{Lip}.\|f^{-1}\|_{Lip}$ (the {\sl distortion\/} of the mapping $f$). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let $X$ be a finite metric space, and let $\varepsilon>0$, $K$ be given numbers. Then there exists a finite metric space $Y$, such that for every mapping $f:Y\to Z$ ($Z$ arbitrary metric space) with $\operatorname{dist}(f)$ one can find a mapping $g:X\to Y$, such that both the mappings $g$ and $f|_{g(X)}$ have distortion at most $(1+\varepsilon)$. If $X$ is isometrically embeddable into a $\ell_p$ space (for some $p\in [1,\infty]$), then also $Y$ can be chosen with this property.
Classification : 05C55, 05D10, 54C25, 54E35
Keywords: Ramsey theory; embedding of metric spaces; distortion; Lipschitz mapping; differentiability of Lipschitz mappings
@article{CMUC_1992__33_3_a7,
     author = {Matou\v{s}ek, Ji\v{r}{\'\i}},
     title = {Ramsey-like properties for {bi-Lipschitz} mappings of finite metric spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {451--463},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1992},
     mrnumber = {1209287},
     zbl = {0769.05093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a7/}
}
TY  - JOUR
AU  - Matoušek, Jiří
TI  - Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 451
EP  - 463
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a7/
LA  - en
ID  - CMUC_1992__33_3_a7
ER  - 
%0 Journal Article
%A Matoušek, Jiří
%T Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 451-463
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a7/
%G en
%F CMUC_1992__33_3_a7
Matoušek, Jiří. Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 451-463. http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a7/