Multipliers of Hankel transformable generalized functions
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 389-401.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

\font\jeden=rsfs10 Let $\Cal H_{\mu }$ be the Zemanian space of Hankel transformable functions, and let $\Cal H'_{\mu }$ be its dual space. In this paper $\Cal H_{\mu }$ is shown to be nuclear, hence Schwartz, Montel and reflexive. The space $\text{\jeden O}$, also introduced by Zemanian, is completely characterized as the set of multipliers of $\Cal H_{\mu }$ and of $\Cal H'_{\mu }$. Certain topologies are considered on $\Cal O$, and continuity properties of the multiplication operation with respect to those topologies are discussed.
Classification : 44A05, 46A11, 46F10, 46F12
Keywords: multipliers; generalized functions; Hankel transformation
@article{CMUC_1992__33_3_a2,
     author = {Betancor, J. J. and Marrero, I.},
     title = {Multipliers of {Hankel} transformable generalized functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {389--401},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1992},
     mrnumber = {1209282},
     zbl = {0801.46047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a2/}
}
TY  - JOUR
AU  - Betancor, J. J.
AU  - Marrero, I.
TI  - Multipliers of Hankel transformable generalized functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 389
EP  - 401
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a2/
LA  - en
ID  - CMUC_1992__33_3_a2
ER  - 
%0 Journal Article
%A Betancor, J. J.
%A Marrero, I.
%T Multipliers of Hankel transformable generalized functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 389-401
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a2/
%G en
%F CMUC_1992__33_3_a2
Betancor, J. J.; Marrero, I. Multipliers of Hankel transformable generalized functions. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 389-401. http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a2/