A note on splittable spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 551-555.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A space $X$ is splittable over a space $Y$ (or splits over $Y$) if for every $A\subset X$ there exists a continuous map $f:X\rightarrow Y$ with $f^{-1} f A=A$. We prove that any $n$-dimensional polyhedron splits over $\bold R^{2n}$ but not necessarily over $\bold R^{2n-2}$. It is established that if a metrizable compact $X$ splits over $\bold R^n$, then $\dim X\leq n$. An example of $n$-dimensional compact space which does not split over $\bold R^{2n}$ is given.
Classification : 54A25, 54D99
Keywords: splittable; polyhedron; dimension
@article{CMUC_1992__33_3_a16,
     author = {Tkachuk, Vladimir V.},
     title = {A note on splittable spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {551--555},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1992},
     mrnumber = {1209296},
     zbl = {0769.54004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a16/}
}
TY  - JOUR
AU  - Tkachuk, Vladimir V.
TI  - A note on splittable spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 551
EP  - 555
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a16/
LA  - en
ID  - CMUC_1992__33_3_a16
ER  - 
%0 Journal Article
%A Tkachuk, Vladimir V.
%T A note on splittable spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 551-555
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a16/
%G en
%F CMUC_1992__33_3_a16
Tkachuk, Vladimir V. A note on splittable spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 551-555. http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a16/