Cantor-connectedness revisited
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 525-532.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Following Preuss' general connectedness theory in topological categories, a connectedness concept for approach spaces is introduced, which unifies topological connectedness in the setting of topological spaces, and Cantor-connectedness in the setting of metric spaces.
Classification : 54A05, 54B30, 54D05
Keywords: connected; Cantor-connected; metric space; topological space; approach space
@article{CMUC_1992__33_3_a13,
     author = {Lowen, R.},
     title = {Cantor-connectedness revisited},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {525--532},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1992},
     mrnumber = {1209293},
     zbl = {0782.54010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a13/}
}
TY  - JOUR
AU  - Lowen, R.
TI  - Cantor-connectedness revisited
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 525
EP  - 532
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a13/
LA  - en
ID  - CMUC_1992__33_3_a13
ER  - 
%0 Journal Article
%A Lowen, R.
%T Cantor-connectedness revisited
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 525-532
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a13/
%G en
%F CMUC_1992__33_3_a13
Lowen, R. Cantor-connectedness revisited. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 525-532. http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a13/