Lower semicontinuous functions with values in a continuous lattice
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 505-523.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is proved that for every continuous lattice there is a unique semiuniform structure generating both the order and the Lawson topology. The way below relation can be characterized with this uniform structure. These results are used to extend many of the analytical properties of real-valued l.s.c\. functions to l.s.c\. functions with values in a continuous lattice. The results of this paper have some applications in potential theory.
Classification : 06B30, 06B35, 31D05, 54C08, 54E15, 54F05
Keywords: continuous lattices; lower semicontinuous functions; potential theory
@article{CMUC_1992__33_3_a12,
     author = {van Gool, Frans},
     title = {Lower semicontinuous functions with values in a continuous lattice},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {505--523},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1992},
     mrnumber = {1209292},
     zbl = {0769.06005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a12/}
}
TY  - JOUR
AU  - van Gool, Frans
TI  - Lower semicontinuous functions with values in a continuous lattice
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 505
EP  - 523
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a12/
LA  - en
ID  - CMUC_1992__33_3_a12
ER  - 
%0 Journal Article
%A van Gool, Frans
%T Lower semicontinuous functions with values in a continuous lattice
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 505-523
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a12/
%G en
%F CMUC_1992__33_3_a12
van Gool, Frans. Lower semicontinuous functions with values in a continuous lattice. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 505-523. http://geodesic.mathdoc.fr/item/CMUC_1992__33_3_a12/