Totally convex algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 205-235.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By definition a totally convex algebra $A$ is a totally convex space $|A|$ equipped with an associative multiplication, i.e\. a morphism $\mu :|A|\otimes |A|\longrightarrow |A|$ of totally convex spaces. In this paper we introduce, for such algebras, the notions of ideal, tensor product, unitization, inverses, weak inverses, quasi-inverses, weak quasi-inverses and the spectrum of an element and investigate them in detail. This leads to a considerable generalization of the corresponding notions and results in the theory of Banach spaces.
Classification : 46H05, 46H10, 46H20, 46H99, 46K05, 46K99, 46M15, 46M99
Keywords: totally convex algebra; Eilenberg-Moore algebra; Banach algebra; ideal; (weak) inverse; spectrum
@article{CMUC_1992__33_2_a2,
     author = {Pumpl\"un, Dieter and R\"ohrl, Helmut},
     title = {Totally convex algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {205--235},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1992},
     mrnumber = {1189653},
     zbl = {0763.46036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_2_a2/}
}
TY  - JOUR
AU  - Pumplün, Dieter
AU  - Röhrl, Helmut
TI  - Totally convex algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 205
EP  - 235
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_2_a2/
LA  - en
ID  - CMUC_1992__33_2_a2
ER  - 
%0 Journal Article
%A Pumplün, Dieter
%A Röhrl, Helmut
%T Totally convex algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 205-235
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_2_a2/
%G en
%F CMUC_1992__33_2_a2
Pumplün, Dieter; Röhrl, Helmut. Totally convex algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 205-235. http://geodesic.mathdoc.fr/item/CMUC_1992__33_2_a2/