Logarithmic capacity is not subadditive – a fine topology approach
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 67-72
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In Landkof's monograph [8, p. 213] it is asserted that logarithmic capacity is strongly subadditive, and therefore that it is a Choquet capacity. An example demonstrating that logarithmic capacity is not even subadditive can be found e.g\. in [6, Example 7.20], see also [3, p. 803]. In this paper we will show this fact with the help of the fine topology in potential theory.
@article{CMUC_1992__33_1_a8,
author = {Pyrih, Pavel},
title = {Logarithmic capacity is not subadditive {\textendash} a fine topology approach},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {67--72},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {1992},
mrnumber = {1173748},
zbl = {0764.31006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a8/}
}
TY - JOUR AU - Pyrih, Pavel TI - Logarithmic capacity is not subadditive – a fine topology approach JO - Commentationes Mathematicae Universitatis Carolinae PY - 1992 SP - 67 EP - 72 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a8/ LA - en ID - CMUC_1992__33_1_a8 ER -
Pyrih, Pavel. Logarithmic capacity is not subadditive – a fine topology approach. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a8/