Logarithmic capacity is not subadditive – a fine topology approach
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 67-72.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In Landkof's monograph [8, p. 213] it is asserted that logarithmic capacity is strongly subadditive, and therefore that it is a Choquet capacity. An example demonstrating that logarithmic capacity is not even subadditive can be found e.g\. in [6, Example 7.20], see also [3, p. 803]. In this paper we will show this fact with the help of the fine topology in potential theory.
Classification : 30C85, 31A15, 31C40, 60J45
Keywords: logarithmic capacity; fine topology
@article{CMUC_1992__33_1_a8,
     author = {Pyrih, Pavel},
     title = {Logarithmic capacity is not subadditive {\textendash} a fine topology approach},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1992},
     mrnumber = {1173748},
     zbl = {0764.31006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a8/}
}
TY  - JOUR
AU  - Pyrih, Pavel
TI  - Logarithmic capacity is not subadditive – a fine topology approach
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 67
EP  - 72
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a8/
LA  - en
ID  - CMUC_1992__33_1_a8
ER  - 
%0 Journal Article
%A Pyrih, Pavel
%T Logarithmic capacity is not subadditive – a fine topology approach
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 67-72
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a8/
%G en
%F CMUC_1992__33_1_a8
Pyrih, Pavel. Logarithmic capacity is not subadditive – a fine topology approach. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a8/