On the boundedness of the mapping $f\to |f|$ in Besov spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 57-66
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For $1\leq p\leq\infty$, precise conditions on the parameters are given under which the particular superposition operator $T:f\to |f|$ is a bounded map in the Besov space $B^s_{p,q}(R^1)$. The proofs rely on linear spline approximation theory.
Classification :
35B45, 41A15, 46E35, 47H30
Keywords: Nemytzki operators; Besov spaces; moduli of smoothness; linear splines
Keywords: Nemytzki operators; Besov spaces; moduli of smoothness; linear splines
@article{CMUC_1992__33_1_a7,
author = {Oswald, P.},
title = {On the boundedness of the mapping $f\to |f|$ in {Besov} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {57--66},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {1992},
mrnumber = {1173747},
zbl = {0766.46018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a7/}
}
Oswald, P. On the boundedness of the mapping $f\to |f|$ in Besov spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 57-66. http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a7/