When $(E,\sigma (E,E'))$ is a $DF$-space?
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 43-44.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(E,t)$ be a Hausdorff locally convex space. Either $(E,\sigma (E,E'))$ or \newline $(E',\sigma (E',E))$ is a $DF$-space iff $E$ is of finite dimension (THEOREM). This is the most general solution of the problem studied by Iyahen [2] and Radenovič [3].
Classification : 46A03, 46A04, 46A05, 46A20
Keywords: $DF$-spaces; countably quasibarrelled spaces
@article{CMUC_1992__33_1_a4,
     author = {Krassowska, Dorota and \'Sliwa, Wiesƚaw},
     title = {When $(E,\sigma (E,E'))$ is a $DF$-space?},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {43--44},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1992},
     mrnumber = {1173744},
     zbl = {0782.46006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a4/}
}
TY  - JOUR
AU  - Krassowska, Dorota
AU  - Śliwa, Wiesƚaw
TI  - When $(E,\sigma (E,E'))$ is a $DF$-space?
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 43
EP  - 44
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a4/
LA  - en
ID  - CMUC_1992__33_1_a4
ER  - 
%0 Journal Article
%A Krassowska, Dorota
%A Śliwa, Wiesƚaw
%T When $(E,\sigma (E,E'))$ is a $DF$-space?
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 43-44
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a4/
%G en
%F CMUC_1992__33_1_a4
Krassowska, Dorota; Śliwa, Wiesƚaw. When $(E,\sigma (E,E'))$ is a $DF$-space?. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 43-44. http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a4/