When $(E,\sigma (E,E'))$ is a $DF$-space?
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 43-44
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $(E,t)$ be a Hausdorff locally convex space. Either $(E,\sigma (E,E'))$ or \newline $(E',\sigma (E',E))$ is a $DF$-space iff $E$ is of finite dimension (THEOREM). This is the most general solution of the problem studied by Iyahen [2] and Radenovič [3].
Classification :
46A03, 46A04, 46A05, 46A20
Keywords: $DF$-spaces; countably quasibarrelled spaces
Keywords: $DF$-spaces; countably quasibarrelled spaces
@article{CMUC_1992__33_1_a4,
author = {Krassowska, Dorota and \'Sliwa, Wiesƚaw},
title = {When $(E,\sigma (E,E'))$ is a $DF$-space?},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {43--44},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {1992},
mrnumber = {1173744},
zbl = {0782.46006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a4/}
}
TY - JOUR AU - Krassowska, Dorota AU - Śliwa, Wiesƚaw TI - When $(E,\sigma (E,E'))$ is a $DF$-space? JO - Commentationes Mathematicae Universitatis Carolinae PY - 1992 SP - 43 EP - 44 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a4/ LA - en ID - CMUC_1992__33_1_a4 ER -
Krassowska, Dorota; Śliwa, Wiesƚaw. When $(E,\sigma (E,E'))$ is a $DF$-space?. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 43-44. http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a4/