Orthomodular lattices with fully nontrivial commutators
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 25-32.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An orthomodular lattice $L$ is said to have fully nontrivial commutator if the commutator of any pair $x,y \in L$ is different from zero. In this note we consider the class of all orthomodular lattices with fully nontrivial commutators. We show that this class forms a quasivariety, we describe it in terms of quasiidentities and situate important types of orthomodular lattices (free lattices, Hilbertian lattices, etc.) within this class. We also show that the quasivariety in question is not a variety answering thus the question implicitly posed in [4].
Classification : 06C15, 08C15
Keywords: orthomodular lattice; commutator; quasivariety
@article{CMUC_1992__33_1_a2,
     author = {Matou\v{s}ek, Milan},
     title = {Orthomodular lattices with fully nontrivial commutators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {25--32},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1992},
     mrnumber = {1173742},
     zbl = {0758.06007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a2/}
}
TY  - JOUR
AU  - Matoušek, Milan
TI  - Orthomodular lattices with fully nontrivial commutators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 25
EP  - 32
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a2/
LA  - en
ID  - CMUC_1992__33_1_a2
ER  - 
%0 Journal Article
%A Matoušek, Milan
%T Orthomodular lattices with fully nontrivial commutators
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 25-32
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a2/
%G en
%F CMUC_1992__33_1_a2
Matoušek, Milan. Orthomodular lattices with fully nontrivial commutators. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 25-32. http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a2/