Natural sinks on $Y_\beta$
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 173-179.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let ${(e_\beta : {\bold Q} \rightarrow Y_\beta)}_{\beta \in \text{\bf Ord}}$ be the large source of epimorphisms in the category $\text{\bf Ury}$ of Urysohn spaces constructed in [2]. A sink ${(g_\beta : Y_\beta \rightarrow X)}_{\beta \in \text{\bf Ord}}$ is called natural, if $g_\beta \circ e_\beta = g_{\beta'} \circ e_{\beta'}$ for all $\beta,\beta' \in \text{\bf Ord}$. In this paper natural sinks are characterized. As a result it is shown that $\text{\bf Ury}$ permits no $({Epi},{\Cal M})$-factorization structure for arbitrary (large) sources.
Classification : 18A20, 18A30, 18B30, 54B30, 54C10, 54D10, 54D35, 54G20
Keywords: epimorphism; Urysohn space; cointersection; factorization; natural sink; periodic; cowellpowered; ordinal
@article{CMUC_1992__33_1_a19,
     author = {Schr\"oder, J.},
     title = {Natural sinks on $Y_\beta$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {173--179},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1992},
     mrnumber = {1173759},
     zbl = {0761.18004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a19/}
}
TY  - JOUR
AU  - Schröder, J.
TI  - Natural sinks on $Y_\beta$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 173
EP  - 179
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a19/
LA  - en
ID  - CMUC_1992__33_1_a19
ER  - 
%0 Journal Article
%A Schröder, J.
%T Natural sinks on $Y_\beta$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 173-179
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a19/
%G en
%F CMUC_1992__33_1_a19
Schröder, J. Natural sinks on $Y_\beta$. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 173-179. http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a19/