Čech-Stone-like compactifications for general topological spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 159-163
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The problem whether every topological space $X$ has a compactification $Y$ such that every continuous mapping $f$ from $X$ into a compact space $Z$ has a continuous extension from $Y$ into $Z$ is answered in the negative. For some spaces $X$ such compactifications exist.
@article{CMUC_1992__33_1_a17,
author = {Hu\v{s}ek, Miroslav},
title = {\v{C}ech-Stone-like compactifications for general topological spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {159--163},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {1992},
mrnumber = {1173757},
zbl = {0754.54014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a17/}
}
TY - JOUR AU - Hušek, Miroslav TI - Čech-Stone-like compactifications for general topological spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1992 SP - 159 EP - 163 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a17/ LA - en ID - CMUC_1992__33_1_a17 ER -
Hušek, Miroslav. Čech-Stone-like compactifications for general topological spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 159-163. http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a17/