Hereditarity of closure operators and injectivity
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 149-157
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A notion of hereditarity of a closure operator with respect to a class of monomorphisms is introduced. Let $C$ be a regular closure operator induced by a subcategory $\Cal A$. It is shown that, if every object of $\Cal A$ is a subobject of an $\Cal A$-object which is injective with respect to a given class of monomorphisms, then the closure operator $C$ is hereditary with respect to that class of monomorphisms.
Classification :
18A20, 18A32, 18G05
Keywords: closure operator; hereditary closure operator; injective object; factorization pair
Keywords: closure operator; hereditary closure operator; injective object; factorization pair
@article{CMUC_1992__33_1_a16,
author = {Castellini, Gabriele and Giuli, Eraldo},
title = {Hereditarity of closure operators and injectivity},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {149--157},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {1992},
mrnumber = {1173756},
zbl = {0758.18002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a16/}
}
TY - JOUR AU - Castellini, Gabriele AU - Giuli, Eraldo TI - Hereditarity of closure operators and injectivity JO - Commentationes Mathematicae Universitatis Carolinae PY - 1992 SP - 149 EP - 157 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a16/ LA - en ID - CMUC_1992__33_1_a16 ER -
Castellini, Gabriele; Giuli, Eraldo. Hereditarity of closure operators and injectivity. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 149-157. http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a16/