A categorical concept of completion of objects
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 131-147.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce the concept of firm classes of morphisms as basis for the axiomatic study of completions of objects in arbitrary categories. Results on objects injective with respect to given morphism classes are included. In a finitely well-complete category, firm classes are precisely the coessential first factors of morphism factorization structures.
Classification : 18A32, 18A40, 18B30, 18G05, 54B30, 54E15
Keywords: firm reflection; (sub-)firm class; injective object; (co)-essential morphism
@article{CMUC_1992__33_1_a15,
     author = {Br\"ummer, G. C. L. and Giuli, E.},
     title = {A categorical concept of completion of objects},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {131--147},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1992},
     mrnumber = {1173755},
     zbl = {0760.18005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a15/}
}
TY  - JOUR
AU  - Brümmer, G. C. L.
AU  - Giuli, E.
TI  - A categorical concept of completion of objects
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 131
EP  - 147
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a15/
LA  - en
ID  - CMUC_1992__33_1_a15
ER  - 
%0 Journal Article
%A Brümmer, G. C. L.
%A Giuli, E.
%T A categorical concept of completion of objects
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 131-147
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a15/
%G en
%F CMUC_1992__33_1_a15
Brümmer, G. C. L.; Giuli, E. A categorical concept of completion of objects. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 131-147. http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a15/