Extremal and optimal solutions in the transshipment problem
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 97-112
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper yields an investigation of the set of all finite measures on the product space with given difference of marginals. Extremal points of this set are characterized and constructed. Sets of uniqueness are studied in the relation to marginal problem. In the optimization problem the support of the optimal measure is described for a class of cost functions. In an example the optimal value is reached by an unbounded sequence of measures.
Classification :
52A05, 60B05
Keywords: transshipment problem; set of uniqueness; simplicial measure; optimal solution
Keywords: transshipment problem; set of uniqueness; simplicial measure; optimal solution
@article{CMUC_1992__33_1_a11,
author = {Bene\v{s}, Viktor},
title = {Extremal and optimal solutions in the transshipment problem},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {97--112},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {1992},
mrnumber = {1173751},
zbl = {0754.60008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a11/}
}
TY - JOUR AU - Beneš, Viktor TI - Extremal and optimal solutions in the transshipment problem JO - Commentationes Mathematicae Universitatis Carolinae PY - 1992 SP - 97 EP - 112 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a11/ LA - en ID - CMUC_1992__33_1_a11 ER -
Beneš, Viktor. Extremal and optimal solutions in the transshipment problem. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 97-112. http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a11/