QTAG torsionfree modules
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 1-20
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The structure theory of abelian $p$-groups does not depend on the properties of the ring of integers, in general. The substantial portion of this theory is based on the fact that a finitely generated $p$-group is a direct sum of cyclics. Given a hereditary torsion theory on the category $R$-{\bf Mod} of unitary left $R$-modules we can investigate torsionfree modules having the corresponding property for all torsionfree factor-modules (and a natural requirement concerning extensions of some homomorphisms). This paper continues in our previous investigations of the structural properties of such modules.
Classification :
16D70, 16D80, 16S90
Keywords: torsion theory; torsionfree module; $\sigma$-QTAG-module; kernel of purity; center of purity
Keywords: torsion theory; torsionfree module; $\sigma$-QTAG-module; kernel of purity; center of purity
@article{CMUC_1992__33_1_a0,
author = {Bican, Ladislav and Torrecillas, Blas},
title = {QTAG torsionfree modules},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {1--20},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {1992},
mrnumber = {1173740},
zbl = {0765.16009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a0/}
}
Bican, Ladislav; Torrecillas, Blas. QTAG torsionfree modules. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 1-20. http://geodesic.mathdoc.fr/item/CMUC_1992__33_1_a0/