Some results on the product of distributions and the change of variable
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 677-685
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $F$ and $G$ be distributions in $\Cal D'$ and let $f$ be an infinitely differentiable function with $f'(x)>0$, (or $0$). It is proved that if the neutrix product $F\circ G$ exists and equals $H$, then the neutrix product $F(f)\circ G(f)$ exists and equals $H(f)$.
@article{CMUC_1991__32_4_a9,
author = {\"Oz\c{c}ag, Emin and Fisher, Brian},
title = {Some results on the product of distributions and the change of variable},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {677--685},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {1991},
mrnumber = {1159814},
zbl = {0761.46024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a9/}
}
TY - JOUR AU - Özçag, Emin AU - Fisher, Brian TI - Some results on the product of distributions and the change of variable JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 677 EP - 685 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a9/ LA - en ID - CMUC_1991__32_4_a9 ER -
%0 Journal Article %A Özçag, Emin %A Fisher, Brian %T Some results on the product of distributions and the change of variable %J Commentationes Mathematicae Universitatis Carolinae %D 1991 %P 677-685 %V 32 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a9/ %G en %F CMUC_1991__32_4_a9
Özçag, Emin; Fisher, Brian. Some results on the product of distributions and the change of variable. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 677-685. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a9/