$L^p$-approximation of Jacobians
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 659-666
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper investigates the nonlinear function spaces introduced by Giaquinta, Modica and Souček. It is shown that a function from $\operatorname{Cart}^p(\Omega ,\bold R^m)$ is approximated by $\Cal C ^1$ functions strongly in $\Cal A^q(\Omega ,\bold R^m)$ whenever $q$. An example is shown of a function which is in $\operatorname{cart}^p(\Omega ,\bold R^2)$ but not in $\operatorname{cart}^p(\Omega ,\bold R^2)$.
Classification :
28A75, 46E40, 49J45, 73C50, 74B20
Keywords: Sobolev spaces; minors of the Jacobi matrix; weak and strong convergence; cartesian currents
Keywords: Sobolev spaces; minors of the Jacobi matrix; weak and strong convergence; cartesian currents
@article{CMUC_1991__32_4_a7,
author = {Mal\'y, Jan},
title = {$L^p$-approximation of {Jacobians}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {659--666},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {1991},
mrnumber = {1159812},
zbl = {0753.46024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a7/}
}
Malý, Jan. $L^p$-approximation of Jacobians. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 659-666. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a7/