$L^p$-approximation of Jacobians
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 659-666.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper investigates the nonlinear function spaces introduced by Giaquinta, Modica and Souček. It is shown that a function from $\operatorname{Cart}^p(\Omega ,\bold R^m)$ is approximated by $\Cal C ^1$ functions strongly in $\Cal A^q(\Omega ,\bold R^m)$ whenever $q$. An example is shown of a function which is in $\operatorname{cart}^p(\Omega ,\bold R^2)$ but not in $\operatorname{cart}^p(\Omega ,\bold R^2)$.
Classification : 28A75, 46E40, 49J45, 73C50, 74B20
Keywords: Sobolev spaces; minors of the Jacobi matrix; weak and strong convergence; cartesian currents
@article{CMUC_1991__32_4_a7,
     author = {Mal\'y, Jan},
     title = {$L^p$-approximation of {Jacobians}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {659--666},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1991},
     mrnumber = {1159812},
     zbl = {0753.46024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a7/}
}
TY  - JOUR
AU  - Malý, Jan
TI  - $L^p$-approximation of Jacobians
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 659
EP  - 666
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a7/
LA  - en
ID  - CMUC_1991__32_4_a7
ER  - 
%0 Journal Article
%A Malý, Jan
%T $L^p$-approximation of Jacobians
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 659-666
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a7/
%G en
%F CMUC_1991__32_4_a7
Malý, Jan. $L^p$-approximation of Jacobians. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 659-666. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a7/