$L^p$-approximation of Jacobians
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 659-666

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper investigates the nonlinear function spaces introduced by Giaquinta, Modica and Souček. It is shown that a function from $\operatorname{Cart}^p(\Omega ,\bold R^m)$ is approximated by $\Cal C ^1$ functions strongly in $\Cal A^q(\Omega ,\bold R^m)$ whenever $q$. An example is shown of a function which is in $\operatorname{cart}^p(\Omega ,\bold R^2)$ but not in $\operatorname{cart}^p(\Omega ,\bold R^2)$.
Classification : 28A75, 46E40, 49J45, 73C50, 74B20
Keywords: Sobolev spaces; minors of the Jacobi matrix; weak and strong convergence; cartesian currents
@article{CMUC_1991__32_4_a7,
     author = {Mal\'y, Jan},
     title = {$L^p$-approximation of {Jacobians}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {659--666},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1991},
     mrnumber = {1159812},
     zbl = {0753.46024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a7/}
}
TY  - JOUR
AU  - Malý, Jan
TI  - $L^p$-approximation of Jacobians
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 659
EP  - 666
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a7/
LA  - en
ID  - CMUC_1991__32_4_a7
ER  - 
%0 Journal Article
%A Malý, Jan
%T $L^p$-approximation of Jacobians
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 659-666
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a7/
%G en
%F CMUC_1991__32_4_a7
Malý, Jan. $L^p$-approximation of Jacobians. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 659-666. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a7/