On Liouville theorem and the regularity of weak solutions to some nonlinear elliptic systems of higher order
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 615-625.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The aim of this paper is to show that Liouville type property is a sufficient and necessary condition for the regularity of weak solutions of nonlinear elliptic systems of the higher order.
Classification : 35D10, 35G20, 35J45, 35J60
Keywords: regularity of weak solutions; nonlinear elliptic systems
@article{CMUC_1991__32_4_a3,
     author = {Balanda, L. and Viszus, E.},
     title = {On {Liouville} theorem and the regularity of weak solutions to some nonlinear elliptic systems  of higher order},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {615--625},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1991},
     mrnumber = {1159808},
     zbl = {0773.35017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a3/}
}
TY  - JOUR
AU  - Balanda, L.
AU  - Viszus, E.
TI  - On Liouville theorem and the regularity of weak solutions to some nonlinear elliptic systems  of higher order
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 615
EP  - 625
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a3/
LA  - en
ID  - CMUC_1991__32_4_a3
ER  - 
%0 Journal Article
%A Balanda, L.
%A Viszus, E.
%T On Liouville theorem and the regularity of weak solutions to some nonlinear elliptic systems  of higher order
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 615-625
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a3/
%G en
%F CMUC_1991__32_4_a3
Balanda, L.; Viszus, E. On Liouville theorem and the regularity of weak solutions to some nonlinear elliptic systems  of higher order. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 615-625. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a3/