A note on universal minimal dynamical systems
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 781-783
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $M(G)$ denote the phase space of the universal minimal dynamical system for a group $G$. Our aim is to show that $M(G)$ is homeomorphic to the absolute of $D^{2^\omega }$, whenever $G$ is a countable Abelian group.
Classification :
54H20
Keywords: dynamical system; universal minimal dynamical system; Abelian group; absolute
Keywords: dynamical system; universal minimal dynamical system; Abelian group; absolute
@article{CMUC_1991__32_4_a21,
author = {Turek, S{\l}awomir},
title = {A note on universal minimal dynamical systems},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {781--783},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {1991},
mrnumber = {1159826},
zbl = {0765.54035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a21/}
}
Turek, Sławomir. A note on universal minimal dynamical systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 781-783. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a21/