On centralizers of semiprime rings
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 609-614.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\Cal K$ be a semiprime ring and $T:\Cal K\rightarrow \Cal K$ an additive mapping such that $T(x^2)=T(x)x$ holds for all $x\in \Cal K$. Then $T$ is a left centralizer of $\Cal K$. It is also proved that Jordan centralizers and centralizers of $\Cal K$ coincide.
Classification : 16N60, 16U70, 16W10, 16W20, 16W25
Keywords: semiprime ring; left centralizer; centralizer; Jordan centralizer
@article{CMUC_1991__32_4_a2,
     author = {Zalar, Borut},
     title = {On centralizers of semiprime rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {609--614},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1991},
     mrnumber = {1159807},
     zbl = {0746.16011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a2/}
}
TY  - JOUR
AU  - Zalar, Borut
TI  - On centralizers of semiprime rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 609
EP  - 614
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a2/
LA  - en
ID  - CMUC_1991__32_4_a2
ER  - 
%0 Journal Article
%A Zalar, Borut
%T On centralizers of semiprime rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 609-614
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a2/
%G en
%F CMUC_1991__32_4_a2
Zalar, Borut. On centralizers of semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 609-614. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a2/