Totality of colimit closures
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 761-768.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Adámek, Herrlich, and Reiterman showed that a cocomplete category $\Cal A$ is cocomplete if there exists a small (full) subcategory $\Cal B$ such that every $\Cal A$-object is a colimit of $\Cal B$-objects. The authors of the present paper strengthened the result to totality in the sense of Street and Walters. Here we weaken the hypothesis, assuming only that the colimit closure is attained by transfinite iteration of the colimit closure process up to a fixed ordinal. This requires some investigations on generalized notions of generators.
Classification : 18A20, 18A30, 18A35, 18A40, 18B99
Keywords: cocomplete category; (almost-)$\Cal E$-generator; colimit closure; cointersection; total category
@article{CMUC_1991__32_4_a18,
     author = {B\"orger, Reinhard and Tholen, Walter},
     title = {Totality of colimit closures},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {761--768},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1991},
     mrnumber = {1159823},
     zbl = {0760.18002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a18/}
}
TY  - JOUR
AU  - Börger, Reinhard
AU  - Tholen, Walter
TI  - Totality of colimit closures
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 761
EP  - 768
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a18/
LA  - en
ID  - CMUC_1991__32_4_a18
ER  - 
%0 Journal Article
%A Börger, Reinhard
%A Tholen, Walter
%T Totality of colimit closures
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 761-768
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a18/
%G en
%F CMUC_1991__32_4_a18
Börger, Reinhard; Tholen, Walter. Totality of colimit closures. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 761-768. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a18/