Making factorizations compositive
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 749-759.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The main aim of this paper is to obtain compositive cone factorizations from non-compositive ones by itereration. This is possible if and only if certain colimits of (possibly large) chains exist. In particular, we show that (strong-epi, mono) factorizations of cones exist if and only if joint coequalizers and colimits of chains of regular epimorphisms exist.
Classification : 03E10, 18A20, 18A30, 18A32
Keywords: (locally) orthogonal $\Cal E$-factorization; (local) factorization class; colimit of a chain; cointersection; regular epimorphism; joint coequalizer; (familially) strong epimorphism; decomposition number
@article{CMUC_1991__32_4_a17,
     author = {B\"orger, Reinhard},
     title = {Making factorizations compositive},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {749--759},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1991},
     mrnumber = {1159822},
     zbl = {0760.18001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a17/}
}
TY  - JOUR
AU  - Börger, Reinhard
TI  - Making factorizations compositive
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 749
EP  - 759
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a17/
LA  - en
ID  - CMUC_1991__32_4_a17
ER  - 
%0 Journal Article
%A Börger, Reinhard
%T Making factorizations compositive
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 749-759
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a17/
%G en
%F CMUC_1991__32_4_a17
Börger, Reinhard. Making factorizations compositive. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 749-759. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a17/