On the behaviour of solutions to the nonlinear elliptic Neumann problem in unbounded domains
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 723-729
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The asymptotic behaviour is studied for minima of regular variational problems with Neumann boundary conditions on noncompact part of boundary.
Classification :
35B40, 35J20, 35J35, 35J50, 35J60, 35J65, 46G05, 49N60
Keywords: variational problem; Neumann boundary value problem; unbounded domains; asymptotic behaviour of solutions
Keywords: variational problem; Neumann boundary value problem; unbounded domains; asymptotic behaviour of solutions
@article{CMUC_1991__32_4_a14,
author = {Tarba, L. and Star\'a, J.},
title = {On the behaviour of solutions to the nonlinear elliptic {Neumann} problem in unbounded domains},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {723--729},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {1991},
mrnumber = {1159819},
zbl = {0752.35019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a14/}
}
TY - JOUR AU - Tarba, L. AU - Stará, J. TI - On the behaviour of solutions to the nonlinear elliptic Neumann problem in unbounded domains JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 723 EP - 729 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a14/ LA - en ID - CMUC_1991__32_4_a14 ER -
%0 Journal Article %A Tarba, L. %A Stará, J. %T On the behaviour of solutions to the nonlinear elliptic Neumann problem in unbounded domains %J Commentationes Mathematicae Universitatis Carolinae %D 1991 %P 723-729 %V 32 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a14/ %G en %F CMUC_1991__32_4_a14
Tarba, L.; Stará, J. On the behaviour of solutions to the nonlinear elliptic Neumann problem in unbounded domains. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 723-729. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a14/