Radicals which define factorization systems
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 601-607
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
Classification :
16A21, 16N80, 16S90, 17A65, 18A20, 18E40
Keywords: radical class; factorization system
Keywords: radical class; factorization system
@article{CMUC_1991__32_4_a1,
author = {Gardner, B. J.},
title = {Radicals which define factorization systems},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {601--607},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {1991},
mrnumber = {1159806},
zbl = {0752.16009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a1/}
}
Gardner, B. J. Radicals which define factorization systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 601-607. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a1/