Radicals which define factorization systems
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 601-607.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
Classification : 16A21, 16N80, 16S90, 17A65, 18A20, 18E40
Keywords: radical class; factorization system
@article{CMUC_1991__32_4_a1,
     author = {Gardner, B. J.},
     title = {Radicals which define factorization systems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {601--607},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1991},
     mrnumber = {1159806},
     zbl = {0752.16009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a1/}
}
TY  - JOUR
AU  - Gardner, B. J.
TI  - Radicals which define factorization systems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 601
EP  - 607
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a1/
LA  - en
ID  - CMUC_1991__32_4_a1
ER  - 
%0 Journal Article
%A Gardner, B. J.
%T Radicals which define factorization systems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 601-607
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a1/
%G en
%F CMUC_1991__32_4_a1
Gardner, B. J. Radicals which define factorization systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 601-607. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a1/