On a class of locally Butler groups
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 597-600
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A torsionfree abelian group $B$ is called a Butler group if $Bext(B,T) = 0$ for any torsion group $T$. It has been shown in [DHR] that under $CH$ any countable pure subgroup of a Butler group of cardinality not exceeding $\aleph_\omega$ is again Butler. The purpose of this note is to show that this property has any Butler group which can be expressed as a smooth union $\cup_{\alpha \mu}B_\alpha$ of pure subgroups $B_\alpha$ having countable typesets.
@article{CMUC_1991__32_4_a0,
author = {Bican, Ladislav},
title = {On a class of locally {Butler} groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {597--600},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {1991},
mrnumber = {1159805},
zbl = {0748.20029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a0/}
}
Bican, Ladislav. On a class of locally Butler groups. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 597-600. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a0/