On a class of locally Butler groups
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 597-600.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A torsionfree abelian group $B$ is called a Butler group if $Bext(B,T) = 0$ for any torsion group $T$. It has been shown in [DHR] that under $CH$ any countable pure subgroup of a Butler group of cardinality not exceeding $\aleph_\omega$ is again Butler. The purpose of this note is to show that this property has any Butler group which can be expressed as a smooth union $\cup_{\alpha \mu}B_\alpha$ of pure subgroups $B_\alpha$ having countable typesets.
Classification : 20K20, 20K27, 20K35
Keywords: Butler group; generalized regular subgroup
@article{CMUC_1991__32_4_a0,
     author = {Bican, Ladislav},
     title = {On a class of locally {Butler} groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {597--600},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1991},
     mrnumber = {1159805},
     zbl = {0748.20029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a0/}
}
TY  - JOUR
AU  - Bican, Ladislav
TI  - On a class of locally Butler groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 597
EP  - 600
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a0/
LA  - en
ID  - CMUC_1991__32_4_a0
ER  - 
%0 Journal Article
%A Bican, Ladislav
%T On a class of locally Butler groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 597-600
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a0/
%G en
%F CMUC_1991__32_4_a0
Bican, Ladislav. On a class of locally Butler groups. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 597-600. http://geodesic.mathdoc.fr/item/CMUC_1991__32_4_a0/