Envelopes of holomorphy for solutions of the Laplace and Dirac equations
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 479-494.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Analytic continuation and domains of holomorphy for solution to the complex Laplace and Dirac equations in $\bold C^n$ are studied. First, geometric description of envelopes of holomorphy over domains in $\bold E^n$ is given. In more general case, solutions can be continued by integral formulas using values on a real $n-1$ dimensional cycle in $\bold C^n$. Sufficient conditions for this being possible are formulated.
Classification : 15A66, 30G35, 32D10, 35B60, 35J05, 35Q40
Keywords: envelope of holomorphy; integral formula; index; null-convexity; complex null cone; Lipschitz boundary
@article{CMUC_1991__32_3_a9,
     author = {Kol\'a\v{r}, Martin},
     title = {Envelopes of holomorphy for solutions of the {Laplace} and {Dirac} equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {479--494},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1991},
     mrnumber = {1159796},
     zbl = {0759.32008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a9/}
}
TY  - JOUR
AU  - Kolář, Martin
TI  - Envelopes of holomorphy for solutions of the Laplace and Dirac equations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 479
EP  - 494
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a9/
LA  - en
ID  - CMUC_1991__32_3_a9
ER  - 
%0 Journal Article
%A Kolář, Martin
%T Envelopes of holomorphy for solutions of the Laplace and Dirac equations
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 479-494
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a9/
%G en
%F CMUC_1991__32_3_a9
Kolář, Martin. Envelopes of holomorphy for solutions of the Laplace and Dirac equations. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 479-494. http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a9/