Envelopes of holomorphy for solutions of the Laplace and Dirac equations
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 479-494
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Analytic continuation and domains of holomorphy for solution to the complex Laplace and Dirac equations in $\bold C^n$ are studied. First, geometric description of envelopes of holomorphy over domains in $\bold E^n$ is given. In more general case, solutions can be continued by integral formulas using values on a real $n-1$ dimensional cycle in $\bold C^n$. Sufficient conditions for this being possible are formulated.
Classification :
15A66, 30G35, 32D10, 35B60, 35J05, 35Q40
Keywords: envelope of holomorphy; integral formula; index; null-convexity; complex null cone; Lipschitz boundary
Keywords: envelope of holomorphy; integral formula; index; null-convexity; complex null cone; Lipschitz boundary
@article{CMUC_1991__32_3_a9,
author = {Kol\'a\v{r}, Martin},
title = {Envelopes of holomorphy for solutions of the {Laplace} and {Dirac} equations},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {479--494},
publisher = {mathdoc},
volume = {32},
number = {3},
year = {1991},
mrnumber = {1159796},
zbl = {0759.32008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a9/}
}
TY - JOUR AU - Kolář, Martin TI - Envelopes of holomorphy for solutions of the Laplace and Dirac equations JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 479 EP - 494 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a9/ LA - en ID - CMUC_1991__32_3_a9 ER -
Kolář, Martin. Envelopes of holomorphy for solutions of the Laplace and Dirac equations. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 479-494. http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a9/