$\Cal P$-approximable compact spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 583-595.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For every topological property $\Cal P$, we define the class of $\Cal P$-approximable spaces which consists of spaces X having a countable closed cover $\gamma $ such that the ``section'' $X(x,\gamma )= \bigcap \{F\in \gamma :x\in F\}$ has the property $\Cal P$ for each $x\in X$. It is shown that every $\Cal P$-approximable compact space has $\Cal P$, if $\Cal P$ is one of the following properties: countable tightness, $\aleph _0$-scatteredness with respect to character, $C$-closedness, sequentiality (the last holds under MA or $2^{\aleph _0}2^{\aleph _1}$). Metrizable-approximable spaces are studied: every compact space in this class has a dense, Čech-complete, paracompact subspace; moreover, if $X$ is linearly ordered, then $X$ contains a dense metrizable subspace.
Classification : 54A20, 54A25, 54A35, 54B05, 54B10, 54D20, 54D30, 54D55, 54E35, 54F05
Keywords: $\Cal P$-approximable space; Lindelöf $\Sigma $-space; compact; metrizable; $C$-closed; sequential; linearly ordered
@article{CMUC_1991__32_3_a17,
     author = {Tka\v{c}enko, Michael G.},
     title = {$\Cal P$-approximable compact spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {583--595},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1991},
     mrnumber = {1159804},
     zbl = {0766.54019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a17/}
}
TY  - JOUR
AU  - Tkačenko, Michael G.
TI  - $\Cal P$-approximable compact spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 583
EP  - 595
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a17/
LA  - en
ID  - CMUC_1991__32_3_a17
ER  - 
%0 Journal Article
%A Tkačenko, Michael G.
%T $\Cal P$-approximable compact spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 583-595
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a17/
%G en
%F CMUC_1991__32_3_a17
Tkačenko, Michael G. $\Cal P$-approximable compact spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 583-595. http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a17/