Periodic solutions for third order ordinary differential equations
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 495-499
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we introduce the concept of upper and lower solutions for third order periodic boundary value problems. We show that the monotone iterative technique is valid and obtain the extremal solutions as limits of monotone sequences. We first present a new maximum principle for ordinary differential inequalities of third order that is interesting by itself.
Classification :
34B15, 34C25
Keywords: periodic solution; maximum principle; upper and lower solutions; monotone method
Keywords: periodic solution; maximum principle; upper and lower solutions; monotone method
@article{CMUC_1991__32_3_a10,
author = {Nieto, Juan J.},
title = {Periodic solutions for third order ordinary differential equations},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {495--499},
publisher = {mathdoc},
volume = {32},
number = {3},
year = {1991},
mrnumber = {1159797},
zbl = {0832.34028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a10/}
}
TY - JOUR AU - Nieto, Juan J. TI - Periodic solutions for third order ordinary differential equations JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 495 EP - 499 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a10/ LA - en ID - CMUC_1991__32_3_a10 ER -
Nieto, Juan J. Periodic solutions for third order ordinary differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 495-499. http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a10/