Periodic solutions for third order ordinary differential equations
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 495-499.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we introduce the concept of upper and lower solutions for third order periodic boundary value problems. We show that the monotone iterative technique is valid and obtain the extremal solutions as limits of monotone sequences. We first present a new maximum principle for ordinary differential inequalities of third order that is interesting by itself.
Classification : 34B15, 34C25
Keywords: periodic solution; maximum principle; upper and lower solutions; monotone method
@article{CMUC_1991__32_3_a10,
     author = {Nieto, Juan J.},
     title = {Periodic solutions for third order ordinary differential equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {495--499},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1991},
     mrnumber = {1159797},
     zbl = {0832.34028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a10/}
}
TY  - JOUR
AU  - Nieto, Juan J.
TI  - Periodic solutions for third order ordinary differential equations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 495
EP  - 499
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a10/
LA  - en
ID  - CMUC_1991__32_3_a10
ER  - 
%0 Journal Article
%A Nieto, Juan J.
%T Periodic solutions for third order ordinary differential equations
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 495-499
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a10/
%G en
%F CMUC_1991__32_3_a10
Nieto, Juan J. Periodic solutions for third order ordinary differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 495-499. http://geodesic.mathdoc.fr/item/CMUC_1991__32_3_a10/