An existence theorem for a class of nonlinear elliptic optimal control problems
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 273-279
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We establish the existence of an optimal ``state-control'' pair for an optimal control problem of Lagrange type, monitored by a nonlinear elliptic partial equation involving nonmonotone nonlinearities.
Classification :
35B37, 35J65, 49A29, 49J20, 49J40
Keywords: Sobolev embedding theorem; Novikov's theorem; Aumann's theorem; pseudomonotone operator; property ($M$); nonlinear elliptic equation
Keywords: Sobolev embedding theorem; Novikov's theorem; Aumann's theorem; pseudomonotone operator; property ($M$); nonlinear elliptic equation
@article{CMUC_1991__32_2_a8,
author = {Papageorgiou, Nikolaos S.},
title = {An existence theorem for a class of nonlinear elliptic optimal control problems},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {273--279},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {1991},
mrnumber = {1137788},
zbl = {0752.49005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a8/}
}
TY - JOUR AU - Papageorgiou, Nikolaos S. TI - An existence theorem for a class of nonlinear elliptic optimal control problems JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 273 EP - 279 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a8/ LA - en ID - CMUC_1991__32_2_a8 ER -
%0 Journal Article %A Papageorgiou, Nikolaos S. %T An existence theorem for a class of nonlinear elliptic optimal control problems %J Commentationes Mathematicae Universitatis Carolinae %D 1991 %P 273-279 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a8/ %G en %F CMUC_1991__32_2_a8
Papageorgiou, Nikolaos S. An existence theorem for a class of nonlinear elliptic optimal control problems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 273-279. http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a8/