An existence theorem for a class of nonlinear elliptic optimal control problems
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 273-279.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We establish the existence of an optimal ``state-control'' pair for an optimal control problem of Lagrange type, monitored by a nonlinear elliptic partial equation involving nonmonotone nonlinearities.
Classification : 35B37, 35J65, 49A29, 49J20, 49J40
Keywords: Sobolev embedding theorem; Novikov's theorem; Aumann's theorem; pseudomonotone operator; property ($M$); nonlinear elliptic equation
@article{CMUC_1991__32_2_a8,
     author = {Papageorgiou, Nikolaos S.},
     title = {An existence theorem for a class of nonlinear  elliptic optimal control problems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {273--279},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1991},
     mrnumber = {1137788},
     zbl = {0752.49005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a8/}
}
TY  - JOUR
AU  - Papageorgiou, Nikolaos S.
TI  - An existence theorem for a class of nonlinear  elliptic optimal control problems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 273
EP  - 279
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a8/
LA  - en
ID  - CMUC_1991__32_2_a8
ER  - 
%0 Journal Article
%A Papageorgiou, Nikolaos S.
%T An existence theorem for a class of nonlinear  elliptic optimal control problems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 273-279
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a8/
%G en
%F CMUC_1991__32_2_a8
Papageorgiou, Nikolaos S. An existence theorem for a class of nonlinear  elliptic optimal control problems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 273-279. http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a8/