Sets invariant under projections onto two dimensional subspaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 233-239
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The Blaschke--Kakutani result characterizes inner product spaces $E$, among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace $F$ there is a norm 1 linear projection onto $F$. In this paper, we determine which closed neighborhoods $B$ of zero in a real locally convex space $E$ of dimension at least 3 have the property that for every 2 dimensional subspace $F$ there is a continuous linear projection $P$ onto $F$ with $P(B)\subseteq B$.
Classification :
46A03, 46A55, 46C05, 46C15, 52A07, 52A15
Keywords: inner product space; two dimensional subspace; projection
Keywords: inner product space; two dimensional subspace; projection
@article{CMUC_1991__32_2_a4,
author = {Fitzpatrick, Simon and Calvert, Bruce},
title = {Sets invariant under projections onto two dimensional subspaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {233--239},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {1991},
mrnumber = {1137784},
zbl = {0756.46010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a4/}
}
TY - JOUR AU - Fitzpatrick, Simon AU - Calvert, Bruce TI - Sets invariant under projections onto two dimensional subspaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 233 EP - 239 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a4/ LA - en ID - CMUC_1991__32_2_a4 ER -
%0 Journal Article %A Fitzpatrick, Simon %A Calvert, Bruce %T Sets invariant under projections onto two dimensional subspaces %J Commentationes Mathematicae Universitatis Carolinae %D 1991 %P 233-239 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a4/ %G en %F CMUC_1991__32_2_a4
Fitzpatrick, Simon; Calvert, Bruce. Sets invariant under projections onto two dimensional subspaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 233-239. http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a4/