Locally conformal cosymplectic manifolds and time-dependent Hamiltonian systems
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 383-387.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that locally conformal cosymplectic manifolds may be seen as generalized phase spaces of time-dependent Hamiltonian systems. Thus we extend the results of I. Vaisman for the time-dependent case.
Classification : 37J99, 53C15, 58F05, 70H05
Keywords: cosymplectic manifold; locally conformal cosymplectic manifold; Hamiltonian systems
@article{CMUC_1991__32_2_a20,
     author = {Chinea, Domingo and Le\'on, Manuel de and Marrero, Juan C.},
     title = {Locally conformal cosymplectic manifolds and time-dependent {Hamiltonian} systems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {383--387},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1991},
     mrnumber = {1137800},
     zbl = {0748.53016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a20/}
}
TY  - JOUR
AU  - Chinea, Domingo
AU  - León, Manuel de
AU  - Marrero, Juan C.
TI  - Locally conformal cosymplectic manifolds and time-dependent Hamiltonian systems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 383
EP  - 387
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a20/
LA  - en
ID  - CMUC_1991__32_2_a20
ER  - 
%0 Journal Article
%A Chinea, Domingo
%A León, Manuel de
%A Marrero, Juan C.
%T Locally conformal cosymplectic manifolds and time-dependent Hamiltonian systems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 383-387
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a20/
%G en
%F CMUC_1991__32_2_a20
Chinea, Domingo; León, Manuel de; Marrero, Juan C. Locally conformal cosymplectic manifolds and time-dependent Hamiltonian systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 383-387. http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a20/