A generalization of boundedly compact metric spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 361-367.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A metric space $\langle X,d\rangle$ is called a $\operatorname{UC}$ space provided each continuous function on $X$ into a metric target space is uniformly continuous. We introduce a class of metric spaces that play, relative to the boundedly compact metric spaces, the same role that $\operatorname{UC}$ spaces play relative to the compact metric spaces.
Classification : 54B20, 54C35, 54E15, 54E45
Keywords: $\operatorname{UC}$ space; boundedly $\operatorname{UC}$ space; boundedly compact space; Atsuji space; uniform continuity on bounded sets; topology of uniform convergence on bounded sets; Attouch--Wets topology
@article{CMUC_1991__32_2_a17,
     author = {Beer, Gerald and Di Concilio, Anna},
     title = {A generalization of boundedly compact metric spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {361--367},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1991},
     mrnumber = {1137797},
     zbl = {0766.54028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a17/}
}
TY  - JOUR
AU  - Beer, Gerald
AU  - Di Concilio, Anna
TI  - A generalization of boundedly compact metric spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 361
EP  - 367
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a17/
LA  - en
ID  - CMUC_1991__32_2_a17
ER  - 
%0 Journal Article
%A Beer, Gerald
%A Di Concilio, Anna
%T A generalization of boundedly compact metric spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 361-367
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a17/
%G en
%F CMUC_1991__32_2_a17
Beer, Gerald; Di Concilio, Anna. A generalization of boundedly compact metric spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 361-367. http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a17/