Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{CMUC_1991__32_2_a12, author = {Weidemaier, Peter}, title = {The trace theorem $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited}, journal = {Commentationes Mathematicae Universitatis Carolinae}, pages = {307--314}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {1991}, mrnumber = {1137792}, zbl = {0770.46018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a12/} }
TY - JOUR AU - Weidemaier, Peter TI - The trace theorem $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 307 EP - 314 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a12/ LA - en ID - CMUC_1991__32_2_a12 ER -
%0 Journal Article %A Weidemaier, Peter %T The trace theorem $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited %J Commentationes Mathematicae Universitatis Carolinae %D 1991 %P 307-314 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a12/ %G en %F CMUC_1991__32_2_a12
Weidemaier, Peter. The trace theorem $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 307-314. http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a12/