The trace theorem $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 307-314.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Filling a possible gap in the literature, we give a complete and readable proof of this trace theorem, which also shows that the imbedding constant is uniformly bounded for $T \downarrow 0$. The proof is based on a version of Hardy's inequality (cp. Appendix).
Classification : 34A47, 34B15, 34C11, 46E35
Keywords: trace theory; anisotropic Sobolev spaces
@article{CMUC_1991__32_2_a12,
     author = {Weidemaier, Peter},
     title = {The trace theorem  $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {307--314},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1991},
     mrnumber = {1137792},
     zbl = {0770.46018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a12/}
}
TY  - JOUR
AU  - Weidemaier, Peter
TI  - The trace theorem  $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 307
EP  - 314
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a12/
LA  - en
ID  - CMUC_1991__32_2_a12
ER  - 
%0 Journal Article
%A Weidemaier, Peter
%T The trace theorem  $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 307-314
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a12/
%G en
%F CMUC_1991__32_2_a12
Weidemaier, Peter. The trace theorem  $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 307-314. http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a12/