Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 297-305
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the nonlinear Dirichlet problem $$ -u'' -r(x)|u|^\sigma u= \lambda u \text{ in } (0,\infty ), \, u(0)=0 \text{ and } \lim _{x\rightarrow \infty } u(x)=0, $$ and develop conditions for the function $r$ such that the considered problem has a positive classical solution. Moreover, we present some results showing that $\lambda =0$ is a bifurcation point in $W^{1,2} (0,\infty )$ and in $L^p(0,\infty )\, (2\leq p\leq \infty )$.
Classification :
34A47, 34B15, 34C11, 34C23
Keywords: nonlinear Dirichlet problem; classical solution; bifurcation point; ordinary differential equation
Keywords: nonlinear Dirichlet problem; classical solution; bifurcation point; ordinary differential equation
@article{CMUC_1991__32_2_a11,
author = {Rother, Wolfgang},
title = {Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {297--305},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {1991},
mrnumber = {1137791},
zbl = {0749.34016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a11/}
}
TY - JOUR AU - Rother, Wolfgang TI - Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 297 EP - 305 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a11/ LA - en ID - CMUC_1991__32_2_a11 ER -
%0 Journal Article %A Rother, Wolfgang %T Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$ %J Commentationes Mathematicae Universitatis Carolinae %D 1991 %P 297-305 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a11/ %G en %F CMUC_1991__32_2_a11
Rother, Wolfgang. Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 297-305. http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a11/