Coloring digraphs by iterated antichains
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 209-212.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that the minimum chromatic number of a product of two $n$-chromatic graphs is either bounded by 9, or tends to infinity. The result is obtained by the study of coloring iterated adjoints of a digraph by iterated antichains of a poset.
Classification : 05C15, 06A06, 06A07, 06A10
Keywords: graph product; chromatic number; antichain
@article{CMUC_1991__32_2_a0,
     author = {Poljak, Svatopluk},
     title = {Coloring digraphs by iterated antichains},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {209--212},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1991},
     mrnumber = {1137780},
     zbl = {0758.05053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a0/}
}
TY  - JOUR
AU  - Poljak, Svatopluk
TI  - Coloring digraphs by iterated antichains
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 209
EP  - 212
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a0/
LA  - en
ID  - CMUC_1991__32_2_a0
ER  - 
%0 Journal Article
%A Poljak, Svatopluk
%T Coloring digraphs by iterated antichains
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 209-212
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a0/
%G en
%F CMUC_1991__32_2_a0
Poljak, Svatopluk. Coloring digraphs by iterated antichains. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 209-212. http://geodesic.mathdoc.fr/item/CMUC_1991__32_2_a0/