Homology theory in the alternative set theory I. Algebraic preliminaries
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 75-93
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The notion of free group is defined, a relatively wide collection of groups which enable infinite set summation (called {\bf commutative $\pi$-group}), is introduced. Commutative $\pi$-groups are studied from the set-theoretical point of view and from the point of view of free groups. Commutativity of the operator which is a special kind of inverse limit and factorization, is proved. Tensor product is defined, commutativity of direct product (also a free group construction and tensor product) with the special kind of inverse limit is proved. Some important examples of tensor product are computed.
Classification :
03E70, 03H05, 18G99, 20F99, 55N99
Keywords: alternative set theory; commutative $\pi $-group; free group; inverse system of Sd-classes and Sd-maps; prolongation; set-definable; tensor product; total homomorphism
Keywords: alternative set theory; commutative $\pi $-group; free group; inverse system of Sd-classes and Sd-maps; prolongation; set-definable; tensor product; total homomorphism
@article{CMUC_1991__32_1_a8,
author = {Guri\v{c}an, Jaroslav},
title = {Homology theory in the alternative set theory {I.} {Algebraic} preliminaries},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {75--93},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {1991},
mrnumber = {1118291},
zbl = {0735.03032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a8/}
}
TY - JOUR AU - Guričan, Jaroslav TI - Homology theory in the alternative set theory I. Algebraic preliminaries JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 75 EP - 93 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a8/ LA - en ID - CMUC_1991__32_1_a8 ER -
Guričan, Jaroslav. Homology theory in the alternative set theory I. Algebraic preliminaries. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 75-93. http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a8/