N-compact frames
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 173-187.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate notions of $\Bbb N$-compactness for frames. We find that the analogues of equivalent conditions defining $\Bbb N$-compact spaces are no longer equivalent in the frame context. Indeed, the closed quotients of frame `$\Bbb N$-cubes' are exactly 0-dimensional Lindelöf frames, whereas those frames which satisfy a property based on the ultrafilter condition for spatial $\Bbb N$-compactness form a much larger class, and better embody what `$\Bbb N$-compact frames' should be. This latter property is expressible without reference to maximal ideals or filters. We construct the co-reflections for both of the classes, (the `$\Bbb N$-compactifications'), which both restrict to the spatial $\Bbb N$-compactification.
Classification : 06A23, 06D20, 06D99, 18B30, 54A05, 54D20
Keywords: frame; locale; complete Heyting algebra; $\Bbb N$-compact
@article{CMUC_1991__32_1_a17,
     author = {Schlitt, Greg M.},
     title = {N-compact frames},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {173--187},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1991},
     mrnumber = {1118300},
     zbl = {0747.06009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a17/}
}
TY  - JOUR
AU  - Schlitt, Greg M.
TI  - N-compact frames
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 173
EP  - 187
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a17/
LA  - en
ID  - CMUC_1991__32_1_a17
ER  - 
%0 Journal Article
%A Schlitt, Greg M.
%T N-compact frames
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 173-187
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a17/
%G en
%F CMUC_1991__32_1_a17
Schlitt, Greg M. N-compact frames. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 173-187. http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a17/