Mean quadratic convergence of signed random measures
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 119-123.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider signed Radon random measures on a separable, complete and locally compact metric space and study mean quadratic convergence with respect to vague topology on the space of measures. We prove sufficient conditions in order to obtain mean quadratic convergence. These results are based on some identification properties of signed Radon measures on the product space, also proved in this paper.
Classification : 28A20, 28C05, 60B10, 60F25, 60G57
Keywords: relative compactness; mean quadratic convergence
@article{CMUC_1991__32_1_a12,
     author = {Jacob, P. and Oliveira, P. E.},
     title = {Mean quadratic convergence of signed random measures},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {119--123},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1991},
     mrnumber = {1118295},
     zbl = {0731.60030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a12/}
}
TY  - JOUR
AU  - Jacob, P.
AU  - Oliveira, P. E.
TI  - Mean quadratic convergence of signed random measures
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 119
EP  - 123
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a12/
LA  - en
ID  - CMUC_1991__32_1_a12
ER  - 
%0 Journal Article
%A Jacob, P.
%A Oliveira, P. E.
%T Mean quadratic convergence of signed random measures
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 119-123
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a12/
%G en
%F CMUC_1991__32_1_a12
Jacob, P.; Oliveira, P. E. Mean quadratic convergence of signed random measures. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 119-123. http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a12/