Mean quadratic convergence of signed random measures
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 119-123
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider signed Radon random measures on a separable, complete and locally compact metric space and study mean quadratic convergence with respect to vague topology on the space of measures. We prove sufficient conditions in order to obtain mean quadratic convergence. These results are based on some identification properties of signed Radon measures on the product space, also proved in this paper.
Classification :
28A20, 28C05, 60B10, 60F25, 60G57
Keywords: relative compactness; mean quadratic convergence
Keywords: relative compactness; mean quadratic convergence
@article{CMUC_1991__32_1_a12,
author = {Jacob, P. and Oliveira, P. E.},
title = {Mean quadratic convergence of signed random measures},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {119--123},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {1991},
mrnumber = {1118295},
zbl = {0731.60030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a12/}
}
TY - JOUR AU - Jacob, P. AU - Oliveira, P. E. TI - Mean quadratic convergence of signed random measures JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 119 EP - 123 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a12/ LA - en ID - CMUC_1991__32_1_a12 ER -
Jacob, P.; Oliveira, P. E. Mean quadratic convergence of signed random measures. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 119-123. http://geodesic.mathdoc.fr/item/CMUC_1991__32_1_a12/